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Abstract

Energy loss distribution (or straggling) functions for the analysis of the ionization observed in
particle detectors (TPC, SVT etc) must be calculated accurately (target: 1%). For thin absorbers
(less than 300µm of Si or 10 cm for gases) Bohr or Vavilov calculations are not adequate. Instead a
convolution or Monte Carlo method is needed. For all methods differential collision cross sections
(DCCS) are needed. A brief description of the convolution method is given in the Introduction.
Calculations with Bethe-Fano (B-F), Fermi-Virtual-Photon (FVP) and Rutherford approximations
for DCCS are compared. Differences in the straggling functions caused by the differences in DCCS
are described. At some places results of Vavilov calculations will also be shown.
A comparison between B-F convolutions and GEANT4 calculations will be given in another paper.

1 Introduction

Energy loss (or straggling) functions P (∆), where ∆ is the energy loss along a track segment of length

x [1], can be calculated efficiently and accurately with a convolution method [2, 3, 4, 5]. 1 The

straggling function for ∆ is given by [6, 7, 8]

P (∆) = f(∆; x, v) =
∞∑

n=0

P (n) σ(∆; v)∗n (1)

where P (n) is a Poisson distribution [2, 4, 5, 9] giving the probability density for n collisions in x

P (n) =
mn

c e−mc

n!
(2)

with mc = x · M0(v) the average number of collisions in x.
1Much detail not included here can be found in [2, 5]. Elastic scattering of the particles is not considered here.
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The straggling function for energy losses in n collisions is σ(∆; v)∗n. It is the n−fold convolution

of σ(E; v), defined by

σ(∆; v)∗n =
∫ ∆

0
σ(E; v) · σ∗(n−1)(∆ − E; v) dE, σ(∆; v)∗0 = δ(∆), σ(∆; v)∗1 = σ(∆; v). (3)

where σ(E; v) is the collision cross section differential in energy loss E for single collisions of particles

with speed v. Examples of σ(∆; v)∗n are given in Figs. 11 and 12 of [7], and in [2, 4]. The convolution

(”folding”) method has also been used for calculations of multiple scattering [10].

2 Calculation of differential collision cross sections DCCS

For present purposes the Rutherford DCCS can be written as [5]

σR(E, β) =
k

β2
(1− β2 E

EM
) / E2, k = 0.1535 z2 Z

A
MeVcm2 (4)

where β = v/c is the particle speed, E the energy loss in a collision, z the charge number of the

incident particle, Z the atomic number and A the atomic mass in g/mol of the absorber..

The calculation of the Bethe-Fano (BF) differential collision cross section, DCCS [11, 12] and

explicit equations are given in [6, 8], for Si is described in [6, 7, 8], for the Fermi-Virtual-Photon

equations (FVP) in [6, 7]. Frequently the latter is called the PAI method. The DCCS for Si are

compared in Fig. 1.

The cause of the difference between BF and FVP is given by the approximation shown in Fig. 2: in

FVP the generalized oscillator strength GOS is approximated by a δ function.

The major purpose of this study is to present the differences of 10 to 20% in the results of energy loss

calculations with BF and FVP DCCS. The differences between BF and Rutherford-Vavilov calculations

can be much larger as shown in some of the figures.

At present I am not aware of any program calculating BF DCCS for gases. Therefore the calculations

presented here give a comparison of straggling functions f(∆) for Si calculated with B-F and FVP.

We can assume that gases will show similar trends, see Tables 5-7.
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Figure 1: Inelastic collision cross sections σ(E, v) for single collisions in silicon of minimum ionizing
particles (βγ = 4), calculated with different theories. In order to show the structure of the functions
clearly, the ordinate is σ(E)/σR(E). The abscissa is the energy loss E in a single collision. The
Rutherford cross section Eq. (4) is represented by the horizontal line at 1.0. The solid line was
obtained with the Bethe-Fano theory, [8]. The cross section calculated with FVP [6, 7] is shown by
the dotted line. The functions all extend to EM ∼ 16 MeV, see Eq. (6). The moments are M0 = 4
collisions/µm and M1 = 386 eV/µm, except M0 = 4000 for the Rutherford DCCS with a nominal
values Em ∼ 0.005 eV, Eq. (7).

Figure 2: Generalized oscillator strength GOS for Si for an energy transfer E = 650 eV to the 2p-
shell electrons [8]. Solid line: calculated with Herman-Skilman potential [13], dashed line: hydrogenic
approximation [14]. The horizontal and vertical line define the GOS approximation used in FVP.
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3 Moments Mν of DCCS

In many discussions of energy loss functions attempts are made to derive their properties from the

moments of the DCCS which are defined by

Mν(β) =
∫

Eν σ(E; β) dE (5)

where β = v/c is the particle speed, σ(E; β) the DCCS [7, 15] and E the energy loss in a collision. It

is customary to call M1 the stopping power, and M0 the total CCS. Comparisons of M0 and M1 for

Si, Ne and Ar calculated for B-F and FVP are given in Appendix A.

We see that the values of the stopping power M1 calculated with the two methods differ by less than

1%, while they differ by up to 15% for M0. Since M0 is a primary parameter in Eqs. 1 to 3 while M1

does not appear, we must expect that effects on the straggling functions cannot be readily assessed

from the values of M1.

4 A qualitative estimate of the shape of the straggling functions

From Eq. (2) we see that the peak of the Poisson distribution will be proportional to M0 and we can

assume a width of the function P (n) roughly proportional to 1/
√

n. This will be the same for any

absorber thickness x. The convoluted single collision spectra of Eq.(3) are complex, see Figs. 11 and

12 in [7] or 2.18 and 2.19 in [6]. We can conclude that there is no simple way to relate the properties

of the straggling functions with the moments of Eqs.(2) and (3). As seen in Figs. 3 and 4 from the

location of < ∆ > the stopping power M1 is not especially relevant for the description of the functions.

5 Comparisons of BF and FVP straggling functions.

Calculations of straggling functions with Eq. 1 were made with the B-F and FVP DCCS 2 for charged

particles with speed βγ = 0.316 and 3.16, traversing Si layers with a thickness x(µm) along a particle

track. Some of the functions are shown in Figs. 3 to 5, with comments in the captions. From the

figures we see that the two factors in Eq. (1) have varied influence and importance in Figs. 3 and 4: the
2A comparison of the B-F and Rutherford DCCS is given by the Vavilov functions [5, 8] shown in some of the figures.
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Poisson distribution appears for small energy losses and then disappears in the broader distribution

produced by Eq. (3). 3 In Tables 1 to 4 values are given for two quantities related to Figs. 3-6: the

most probable energy loss ∆p and the FWHM w of P (∆) . Differences between BF and FVP results

are given in percent. We see that the BF and FVP functions are similar in shape, but there is no

simple dependence on x for the differences.

The average number of collisions along the track in x is given by mc = x M0 (below Eq. 2) and the

mean energy loss is < ∆ >= x M1. Values of M0 and M1 for Si are given in Table 5. For Tables 1

and 2 they are M0(0.316) = 30.3/µm and M1 = 2.444 keV/µm.

Note that ∆p/x depends strongly on x and has little relation to < ∆ > /x = M1 = 2.44 keV/mum

(also see Table 8 in Appendix B).

Table 1: Comparison of ∆p/x (keV/µm) and their ratio for B-F and FVP [7], Si, βγ = 0.316.

x(µ) ∆p/x(BF ) ∆p/x(FV P ) diff%
0.33 0.4751 0.5113 7.6
0.66 1.0562 1.1320 7.2
1.25 1.2533 1.3166 5.1
2.5 1.4135 1.4645 3.6
10.0 1.7306 1.7731 2.4
50.0 2.0545 2.0778 1.1

Table 2: Comparison of w/x(kev/µm), their ratio and w/∆p [7], Si, βγ = 0.316.

x(µ) w/x(BF ) w/x(FV P ) dif% w/∆p(BF ) w/∆p(FV P )
0.33 1.5115 1.6485 9.1 3.181 3.224
0.66 1.4441 1.4558 0.8 1.367 1.286
1.25 1.2533 1.2298 −1.9 1.000 0.934
2.5 1.1071 1.0977 −0.8 0.783 0.750
5 1.0598 1.0318 0.97 0.675 0.638
10 0.9800 0.9605 0.98 0.566 0.541
50 0.8568 0.8187 −4.7 0.417 0.394

I have not found any usefull relation between w(x) and x, see Figs. G.1 and G.2 in [7], also see

Appendix B.

3Note that these features have been observed in energy loss measurements for very thin absorbers [5, 16].
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Table 3: Comparison of ∆p/x (eV/µm) and their ratio for B-F and FVP [7], Si, βγ = 3.16.

x(µ) ∆p/x(BF ) ∆p/x(FV P ) diff%
2.5 119.2 121.8 2.2
5.0 151.7 159.0 4.8
10.0 178.0 184.1 3.4
20.0 196.8 201.8 2.5
40.0 216.4 221.1 2.2

Table 4: Comparison of w/x (eV/µm), their ratio and w/∆p [7], Si, βγ = 3.16.

x(µ) w/x(BF ) w/x(FV P ) dif% w/∆p(BF ) w/∆p(FV P )
2.5 232.1 235.8 1.6 1.947 1.937
5 200.2 201.2 0.5 1.320 1.266
10 162.9 162.6 −0.2 0.915 0.883
20 144.9 143.3 −1.1 0.736 0.710
40 137.6 135.5 −1.5 0.636 0.613

Figure 3: Straggling functions calculated with FVP method for particles with speed βγ = 3.16 travers-
ing x = 0.33 µm (solid line, mc = 1.3) and x = 0.66 µm (dashed line, mc = 2.6) [16, 17]. Clearly
neither the most probable values nor the FWHM have much meaning. We can see that the individual
peaks approximate the Poisson distribution, but the increasing spread of σ(∆; v)∗n reduces the Poisson
peaks [5]. The mean value of the energy loss for f(∆) is < ∆ > (0.33) ∼ 0.13 keV, < ∆ > (0.66) ∼ 0.26
keV.
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Figure 4: Straggling functions for particles with speed βγ = 0.316 traversing x = 0.33 µm. [8]. Solid
line: calculated with BF, dashed line: FVP. Neither the most probable values nor the FWHM can be
clearly defined. The Vavilov [18, 19] function is given by the dotted line. The mean energy loss is
< ∆ >.

Figure 5: Straggling functions for particles with speed βγ = 0.316 traversing x = 0.66 µm. [8]. Solid
line: calculated with BF ∆p = 697eV, w = 953eV, dashed line: FVP, ∆p = 747eV, w = 961eV. The
ratio of the ∆p is close to the ratio of the M0 (Table 5), while that of the w is close to that of M1.
The dotted line: FVP for x = 0.626µm, chosen to obtain ∆p = 697eV, and w = 924eV. The reader is
encouraged to contemplate these effects.
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Figure 6: Straggling functions for particles with speed βγ = 0.316 traversing x = 50 µm. [8]. The
functions have been normalized to the same value at the peak. Solid line: calculated with BF, dashed
line: FVP. The most probable values are ∆p(BF ) = 102.7 keV and ∆p(FV P ) = 103.9 keV, differing
by 1.1%, much less than the difference in M0 seen in Table 5. The FWHM differ by 4.7%. The dotted
line represents the Vavilov function with ∆p(V av) = 102 keV and FWHM 10% smaller.

6 Conclusions

The results presented in Sect. 5 are much more complex than the differences between F-B and FVP

shown in the Tables in Appendix A. I am not aware of any analytic approach which would give the

results shown in Figs 3-6 and in Tables 1-4. Calculations with the complete DCCS for both B-F and

FVP for high energy tracks have been made only for Si to my knowledge. 4

From the results in Sect. 5 it is evident that the parameter M0 is much more important than the

stopping power M1. For an accurate determination of M0 the full DCCS must be available, in partic-

ular the generalized oscillator strength (GOS) [11, 12]. The FVP (or PAI) approximation gives fairly

large differences shown in Appendix A.

Therefore I suggest that the Bethe-Fano method should be used for detectors of high energy particles,

and that the Bethe-Fano DCCS should calculated.
4I have no practical knowledge about the methods used for electrons [20].
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A Comparison of the moments calculated with B-F and FVP

The program to calculate the DCCS σ(E; β) for Si with the B-F method was developed early [8]

and used to generate the straggling functions. Results agreed well with experimental data. Later I

modified the program to calculate these functions for Si, Ar and Ne with FVP [7].

Comparisons of the moments M0 and M1 for Si are given in Table 5.

Table 5: Comparison of M0 (coll/µm) and M1 (eV/µm) for B-F and FVP for Si.

M0 M1

bg B − F FV P diff% B − F FV P diff%
0.316 30.32 32.78 8.1 2443.7 2465.3 0.9
1.000 6.729 7.175 6.6 578.3 581.8 0.6
3.981 3.952 4.189 6.0 386.1 387.9 0.5
10.000 3.842 4.068 5.9 416.9 418.6 0.4
100.000 3.842 4.066 5.8 503.8 505.4 0.3

Studies of the Bethe-Fano DCCS were made by Saxon [21, 22, 23, 24], but only the functions for

the moments are currently available. The differences for M1 are also less than 1%, same as for Si.

Calculations of M0 functions were made for protons with kinetic energy T with this method [6, 8, 7]

and are compared with the FVP functions in Tables 6 and 7. For practical reasons the coefficient

k/β2 of Eq.(4) is not used, and thus the Bethe-Lindhard function L for the collision cross section M0

is given in the tables.

Table 6: Comparison of L for protons traversing Ar calculated with FVP, Eq.(7) of [7], and Eq.(1) in
[23] (using J1 − J2 = 4.268).

T (MeV) LF LB diff%
10 13.59 11.89 14.3
30 15.65 13.93 12.3
100 17.81 16.06 11.1
300 19.69 17.87 10.2
500 20.58 18.73 9.9
1000 21.95 20.05 9.5
3000 24.76 22.81 8.5
10000 28.66 26.70 7.3
30000 32.57 30.67 6.2
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Table 7: Comparison of L for Ne calculated with FVP and with Eq.(2) [7], using J1 − J2 = 4.268.

T (MeV) LF LB diff%
10 34.56 31.02 11.4
30 39.37 35.82 9.9
100 44.40 40.85 8.7
300 48.68 45.13 7.9
500 50.70 47.15 7.5
1000 53.81 50.26 7.1
3000 60.31 56.77 6.2
10000 69.40 65.96 5.2
30000 78.01 75.30 3.6

The difference in M0 is quite large for accurate work and should be explored further, especially

for gases. We see that a similar difference in M0 occurs for Si, Ne and Ar. The stopping power M1

calculated with FVP differs by less than 1% from the values given in ICRU 49.

B Asymptotic values of ∆p for thick segments

In the historical studies of energy losses it is postulated that the mean energy loss for a straggling

function is given by < ∆ >= x · M1. From Figs. 2-6 we see that the position of < ∆ > is quite

implausible while the most probable energy loss ∆p is fairly well defined for mc > 20, Fig. 5. I

have made calculations for ∆p for a range of βγ and x and give ∆p/x in Table 8. We see that ∆p/x

approaches the value of M1 only for particle speeds below “minimum ionization”. 5

5The programs used for this study will be posted at [15]
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Table 8: Values of ∆p/x(MeV/cm) as a function of segment thickness t for several particle energies T .

T = 14 6.6 2.93 1.16 0.39 GeV

βγ = 16 8 4 2 1
M1 = 4.37 4.07 3.85 4.05 5.77

x(cm) ∆p/x MeV/cm
0.0078 2.41 2.34 2.31 2.55 3.94
0.0625 2.81 2.74 2.72 3.32 4.67
0.125 2.93 2.86 2.85 3.32 4.90
0.25 3.04 2.98 2.97 3.32 5.12
0.5 3.16 3.10 3.10 3.47 5.33
1 3.28 3.22 3.22 3.61 5.52
2 3.41 3.34 3.35 3.74 5.65
4 3.51 3.45 3.46 3.84 5.71
8 3.56 3.50 3.50 3.89 −

C Convolution with the Rutherford DCCS

It is interesting to compare the Laplace transform method [5, 18, 19] with the convolution method:

just use the DCCS of Eq.(4), with the limits used by Landau [18]

EM = 2mc2 β2 γ2 (6)

where m is the electron mass and

Em =
I2

EM
· exp(β2) (7)

in order to get a good approximation for the stopping power M1. 6 An example is given in Fig.

7. A slight displacement is related to the difference in the energy loss scales: for the convolutions a

logarithmic scale is used, for the Laplace calculations a linear one. We can see that the numerical

programs for Laplace and convolution calculations give close agreement for f(∆).

6With this value of Em the number of collisons per unit track length, M0, will be very large.
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Figure 7: Straggling functions for protons with speed βγ = 0.316 traversing x = 10 µm of Si. dotted
line: Vavilov method: Laplace transforms, DCCS of Eq.(4), dashed line: convolution method, DCCS
of Eq.(4), mc ∼ 6800, Eq.(2). The two functions overlap closely: the most probable values are
∆p(BF ) = 17.79 keV and ∆p(FV P ) = 17.83 keV, differing by 0.2%. The FWHM w ∼ 7.8 keV differ
by 0.4%. The function calculated with the convolution method and the Bethe-Fano DCCS (shown
in Fig. 1) is given by the solid line, ∆p(BF ) = 17.3 keV, w = 9.8 keV and mc = 303. For other
comparisons see [5, 8].
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